

 INFINERA

Customer specific

TNMS NORTHBOUND
TMF/CORBA IF (NTI)

1 (52)

Customer specific

Disclaimer

The information in this document is subject to change without notice and describes only the product defined in

the introduction of this documentation. This documentation is intended for the use of Coriant customers only for

the purposes of the agreement under which the document is submitted, and no part of it may be used,

reproduced, modified or transmitted in any form or means without the prior written permission of Coriant. The

documentation has been prepared to be used by professional and properly trained personnel, and the customer

assumes full responsibility when using it. Coriant welcomes customer comments as part of the process of

continuous development and improvement of the documentation.

The information or statements given in this documentation concerning the suitability, capacity, or performance

of the mentioned hardware or software products are given “as is” and all liability arising in connection with such

hardware or software products shall be defined conclusively and finally in a separate agreement between

Coriant and the customer. However, Coriant has made all reasonable efforts to ensure that the instructions

contained in the document are adequate and free of material errors and omissions. Coriant will, if deemed

necessary by Coriant, explain issues which may not be covered by the document.

Coriant will correct errors in this documentation as soon as possible. IN NO EVENT WILL CORIANT BE LIABLE FOR

ERRORS IN THIS DOCUMENTATION OR FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, DIRECT,

INDIRECT, INCIDENTAL OR CONSEQUENTIAL OR ANY LOSSES, SUCH AS BUT NOT LIMITED TO LOSS OF PROFIT,

REVENUE, BUSINESS INTERRUPTION, BUSINESS OPPORTUNITY OR DATA,THAT MAY ARISE FROM THE USE OF

THIS DOCUMENT OR THE INFORMATION IN IT.

This documentation and the product it describes are considered protected by copyrights and other intellectual

property rights according to the applicable laws.

Other product names mentioned in this document may be trademarks of their respective owners, and they are

mentioned for identification purposes only.

Copyright © Coriant 2020. All rights reserved.

2 (52)

Customer specific

Contents
1. TMF Northbound IF Installation & Configuration.. 4

1.1 WM new Mesh String TMF 814 – 4.5 TNMS Installation .. 4

1.2 TNMS TMF Northbound IF Configuration ... 5

1.2.1 ASON/GMPLS Configuration .. 5

1.2.2 PM High Precision Configuration .. 6

1.3 Firewall Configuration between TNMS/TMF and Umbrella System .. 7

1.4 Umbrella System Configuration via TNMS TMF ... 11

1.4.1 Connection via Naming Service .. 11

1.4.2 Connection via EMS Session Factory IOR file ... 14

1.5 Check used TMF Version .. 17

1.6 Check used Network Topology ... 18

1.7 Supported Managers and associated Capabilities .. 19

2. EMSMgr_I Interface ... 20

2.1 EMSMgr_I::acknowledgeAlarms ... 20

2.2 EMSMgr_I::getAllEMSAndMEActiveAlarms (ProbableCauseQualifier, Path Correlation) 22

2.3 EMSMgr_I::getAllEMSSystemActiveAlarms .. 26

2.4 EMSMgr_I::getAllTopLevelSubnetworkNames ... 28

2.5 EMSMgr_I::getAllTopLevelSubnetworks ... 29

2.6 EMSMgr_I::getAllTopLevelTopologicalLinkNames ... 30

2.7 EMSMgr_I::getAllTopLevelTopologicalLinks ... 32

2.8 EMSMgr_I::getEMS ... 34

2.9 EMSMgr_I::getTopLevelTopologicalLink ... 35

2.10 EMSMgr_I::unacknowledgeAlarms ... 36

2.11 EMSMgr_I::createTopologicalLink (Create IPCs) ... 38

2.12 EMSMgr_I::deleteTopologicalLink (Delete IPCs) .. 40

3. EquipmentInventoryMgr_I Interface ... 41

3.1 EquipmentInventoryMgr_I::getAllEquipment ... 41

3.2 EquipmentInventoryMgr_I::getAllEquipmentNames ... 42

3.3 EquipmentInventoryMgr_I::getAllSupportedPTPNames ... 43

3.4 EquipmentInventoryMgr_I::getAllSupportedPTPs ... 44

3.5 EquipmentInventoryMgr_I::getEquipment ... 45

3.6 EquipmentInventoryMgr_I::setAlarmReportingOff .. 46

3 (52)

Customer specific

3.7 EquipmentInventoryMgr_I::setAlarmReportingOn .. 47

3.8 EquipmentInventoryMgr_I::provisionEquipment (Card Commissioning) 48

4. Abbreviations ... 50

4 (52)

Customer specific

1. TMF Northbound IF Installation &
Configuration

1.1 WM new Mesh String TMF 814 – 4.5 TNMS Installation

During TNMS Server installation, at the “Northbound Interfaces” step, the TMF/Corba component

is required to be installed.

Purpose Install Northbound TMF/Corba Interface (NTI) at TNMS Server

Procedure At the Northbound Interfaces step, during TNMS Server installation, select the

TMF/Corba component with no “Legacy Mode” (box unchecked). This will

deploy the profile WM new Mesh String with TMF 814 – 4.5, as required. The

NTI_DS software installation is only required on Windows OS, LINUX OS

deployments have NTI_DS natively.

Having the installation done, check that the appropriate EMS processes are
running by means of executing the command:
./opt/coriant/tnms/SCS/bin/emsstarterdaemon.sh status
If not running, execute the command:
./opt/coriant/tnms/SCS/bin/emsstarterdaemon.sh start

Check that Notification Service is in the “Running” state.

Notes

5 (52)

Customer specific

1.2 TNMS TMF Northbound IF Configuration

1.2.1 ASON/GMPLS Configuration

For the ASON/GMPLS functionality to be available thru TMF Northbound IF, namely the

establishment and release of (DSR) ASON calls, the operator needs to enable the functionality

before it can be used. This will rely on the used WM new Mesh String with TMF 814 – 4.5 profile.

Purpose Configure the nti.properties file to enable the ASON/GMPLS functionality thru

TMF Northbound IF

Procedure In order to be possible from TMF Northbound IF to establish and release DSR

ASON Calls the following entries need to be changed/added to the file:

\server\bicnet\deployments\bicnet.ear\conf\nti.properties

nti.ChtPrivatePassEnabled=true

nti.CallOperationsTimeout=30

nti.EquipmentOperationsTimeout=10

nti.PgOperationsTimeout=120

Restart the EMS processes:

./opt/coriant/tnms/SCS/bin/emsstarterdaemon.sh stop

./opt/coriant/tnms/SCS/bin/emsstarterdaemon.sh start

Notes

6 (52)

Customer specific

1.2.2 PM High Precision Configuration

For Performance Management High Precision to be available thru TMF Northbound IF, instead of

using a Float variable (TMF standard), the operator needs to configure it according with the below

steps.

Purpose Configure the nti.properties file to set High Precision thru TMF Northbound IF

related to Performance Management Counters (e.g. good octets)

Procedure In order to be possible from TMF Northbound IF to report Performance

Management Counters (e.g. good octets) in a High Precision format, change

the following entry at the file:

\server\bicnet\deployments\bicnet.ear\conf\nti.properties

nti.PmUploadUseHighPrecision=true

This change will “force” NTI to use exactly the same precision as
TNMS/LCT.

The file is readable by the Server with an interval of about 5 minutes, wait a
longer time (e.g. 15m) to have it activated, or restart TNMS/EMS:

./opt/coriant/tnms/SCS/bin/emsstarterdaemon.sh stop

./opt/coriant/tnms/SCS/bin/emsstarterdaemon.sh start

Notes

7 (52)

Customer specific

1.3 Firewall Configuration between TNMS/TMF and Umbrella
System

In case a Firewall between TNMS/TMF IF and the Umbrella System exists, quite common, the one

needs to open the relavant Protocol(s) and respective Port(s) at that Firewall. This section intends

to cover the requirements related to the Firewall configuration in terms of Protocol(s) and respective

Port(s), on both communication directions.

Purpose Configure the relevant Protocol(s) and respective Port(s) at Firewall to allow

communication between TNMS/TMF IF and the Umbrella System on both

directions.

Procedure In order to be possible the communication between TNMS/TMF IF and the

Umbrella System thru an existing Firewall, the following Protocol(s) and respective

Port(s) needed to be open at the Firewall:

1) FROM Umbrella System TO TNMS/TMF IF:

Destination Port: Default LINUX 59052 (Configurable)

Protocol: TCP

Application: CORBA Notification Service

Encrypted: No

Description: TMF-814 interface for integration into umbrella NMS.

Destination Port: 3528

Protocol: TCP

Application: CORBA Naming Service

Encrypted: No

Description: TMF-814 interface for integration into umbrella NMS.

Regrading to the Configurable Port mentioned above (CORBA Notification

Service), the one can change it following the next steps (at TNMS Server):

a) Stop the following Service at TNMS Server / TMF IF:

$SCS_BIN_DIR/scs_ctl stop NoSe

8 (52)

Customer specific

Procedure

b) Open and Edit the file:

$NOSE_HOME/domains/OpenFusion/localhost/NotificationService/NotificationSe

rvice.xml

Change the follwowing Entry to the desired Port:

<Property lock="false" enabled="true" sysprop="false">

 <PropertyName>Port</PropertyName>

 <PropertyValue>59052</PropertyValue>

</Property>

c) start again the Service at TNMS Server / TMF IF:

$SCS_BIN_DIR/scs_ctl start NoSe

Remark: When changing this Port (Configurable) the Umbrella System will stop to

receive notifications for a while, which is expected.

2) FROM TNMS/TMF IF TO Umbrella System:

Destination Port: Configurable => The port where the Umbrella System binded

the NmsSession_I CORBA object

Protocol: TCP

Application: CORBA

Encrypted: No

Description: NmsSession_I CORBA object

The following Port range shall be ensured at TNMS/TMF IF side:

49152<-> 65535 => NmsSession_I CORBA object entity selection, UNIX OS related

EXAMPLE OF ESTABLISHED SESSIONS (using netstat -na)

Umbrella System (TTT-Tool): 172.9.1.21

TNMS/TMF (Server): 172.9.1.1

Just connecting the Umbrella System (TTT Tool) to TNMS Server (TMF-IF), with

No Notification Sevices Enabled:

9 (52)

Customer specific

Procedure 1. Session Request based on Naming Service (3528)

2. A New Port was created (46932 => NmsSession_I CORBA object entity

selection, LINUX OS related) at TNMS Server side establishing a session

between TNMS Server and Umbrella.

After a while the Session Request connection is dropped because the

communication session is established:

Enabling now the Notification Service:

Port 59052 (Default, but can be configurable at TNMS Server) of the Notification

Service was used to request a new session for the Notifications:

10 (52)

Customer specific

Procedure After a while the Request Session connection is also dropped because the new

communication session is established:

Notice that, at the TNMS Server (TMF-IF), the Default Port (59052) was changed

to a new Port (47746).

In the end we’ve TWO Sessions estalished, one for Executing Methods

(172.9.1.1:46932), the other for the Notifications (172.9.1.1:47746)

Notes

11 (52)

Customer specific

1.4 Umbrella System Configuration via TNMS TMF

There are plenty of TMF umbrella systems on the market possible to connect TNMS, also known as

Northbound IF Clients (NBI Client’s), the used TMF IF is standardized and well described. In the

particular case of our Acceptance Test Manual (ATMN) an internal Coriant TMF umbrella system,

named TNMS Test Client (TTT), will be used for its simplicity (customization), it allow to drill down

easily from parent to child in form of a graphical tree representation.

The connection between TNMS TMF IF and the umbrella system is possible in two ways:

- Naming Service

- EMS session Factory IOR file

1.4.1 Connection via Naming Service

Purpose: Umbrella system configuration connected via Naming Service

Procedure: Assuming the internal Coriant TMF umbrella system (TTT) as our NBI Client,

configure the following parameters at the NMS configuration tab:

Select “Use Naming Server” and fill the required parameters:

 - Hostname: IP of TNMS Server;

 - Port (optional): use the default 3528;

 - Vendor: Coriant;

 - EMS Instance: TNMS;

 - TMF Version (Optional): 4.5;

EMS Type:

 - Client Type: NTI_WM;

Authentication Information:

 - Username: The user must be created on User Management of TNMS;

 - Password: The password of the user must be configured on User Management of

TNMS;

12 (52)

Customer specific

Procedure:

Having the above proper configured at our NBI Client (TTT) the connection can be

established to TNMS TMF IF:

LOG output from TTT Tool:

[2017-10-02 12:24:11] Logging started!

[2017-10-02 12:24:41] Connecting to TNMS...

[2017-10-02 12:24:41] Properties file "C:\Users\gmpls\Desktop\TnmsTestClient\tmf.properties" loaded

[2017-10-02 12:24:41] Using Naming Service

[2017-10-02 12:24:42] vendor = Coriant

[2017-10-02 12:24:42] Object path =

TMF_MTNM@Class|Coriant@Vendor|Coriant/TNMS@EmsInstance|4.5@Version|Coriant/TNMS@EmsSess

ionFactory_I

[2017-10-02 12:24:42] component[0] = TMF_MTNM@Class

[2017-10-02 12:24:42] component[1] = Coriant@Vendor

[2017-10-02 12:24:42] component[2] = Coriant/TNMS@EmsInstance

[2017-10-02 12:24:42] component[3] = 4.5@Version

[2017-10-02 12:24:42] component[4] = Coriant/TNMS@EmsSessionFactory_I

13 (52)

Customer specific

Procedure: [2017-10-02 12:24:43] Activate POA manager...

[2017-10-02 12:24:43] Activate NMS session...

[2017-10-02 12:24:46] Connected! Time: 5.43 s

Moreover, and in order to collect notifications/events (spontaneously) from EMS

System (TNMS), the notifications need to be Enabled after having the TTT Tool

connected to EMS system (TNMS); there will be a “Event List” Window where such

notifications/events will be displayed.

Notes:

14 (52)

Customer specific

1.4.2 Connection via EMS Session Factory IOR file

Purpose: EMS and Umbrella system configuration connected via Factory IOR file

Procedure: Assuming the internal Coriant TMF umbrella system (TTT) as our NBI Client,

configure the following parameters at the NMS configuration tab:

Having EMS running (TNMS), copy the IOR file from EMS to the Umbrella System location

(TTT):

/coriant/tnms/var/nti/NTIServerEmsSessionFactory.ior => TTT folder local location

Select “Use IOR” and fill the required parameters:

 - Hostname: IP of TNMS Server;

 - Port (optional): use the default 3528;

 - Vendor: Coriant;

 - EMS Instance: TNMS;

 - TMF Version (Optional): 4.5;

EMS Type:

 - Client Type: NTI_WM;

Authentication Information:

 - Username: The user must be created on User Management of TNMS;

 - Password: The password of the user must be configured on User Management of

TNMS;

15 (52)

Customer specific

Procedure:

For every EMS restart (TNMS), the IOR file gets a new port (Dynamic port) and

the operator needs again to copy it according with the above procedure,

otherwise no connection will be possible between EMS and the umbrella

system (TTT).

Having the above proper configured at our NBI Client (TTT) side the connection can

be established to TNMS TMF IF:

LOG output from TTT Tool:

[2017-10-02 12:53:26] Logging started!

[2017-10-02 12:59:08] Connecting to TNMS...

[2017-10-02 12:59:08] Properties file
"C:\Users\gmpls\Desktop\TnmsTestClient\tmf.properties" loaded

[2017-10-02 12:59:08] Using IOR from file
C:\Coriant\TNMS\var\nti\NTIServerEmsSessionFactory.ior

[2017-10-02 12:59:08]
IOR:000000000000003F49444C3A6D746E6D2E746D666F72756D…

16 (52)

Customer specific

Procedure: [2017-10-02 12:59:09] Activate POA manager...

[2017-10-02 12:59:09] Activate NMS session...

[2017-10-02 12:59:09] Connected! Time: 1.35 s

Moreover, and in order to collect notifications/events (spontaneously) from EMS

System (TNMS), the notifications need to be Enabled after having the TTT Tool

connected to EMS system (TNMS); there will be a “Event List” Window where

such notifications/events will be displayed.

Notes:

17 (52)

Customer specific

1.5 Check used TMF Version

Purpose: Check that the used TMF version is 4.5 (TMF 814 4.5)

Procedure: At the umbrella system (NMS) execute the following method:

EmsSessionFactory_I::getVersion

Notes:

18 (52)

Customer specific

1.6 Check used Network Topology

Purpose: Check that the used Network Topology is MESH

Procedure: At the umbrella system (NMS) execute the following method:

EMSMgr_I::getAllTopLevelSubNetworks

On top of MLS=1 request the associated Contents.

Notes:

19 (52)

Customer specific

1.7 Supported Managers and associated Capabilities

TMF Methods are requested to well defined Interfaces, which usually are aligned with the existing

supported Managers and associated capabilities. In our EMS Domain the following

Managers/Interfaces are supported:

- EMSMgr_I

- EquipmentInventoryMgr_I

- GuiCutThroughMgr_I

- MaintenanceMgr_I

- ManagedElementMgr_I

- MultiLayerSubnetworkMgr_I

- PerformanceManagementMgr_I

- ProtectionMgr_I

- ProtectionMgrProprietary_I

There is an additional interface, Common_I, which is part of all the displayed Managers since there

are some common Methods as for e.g. setOwner, setUserLabel, setAdditinalInfo.

Purpose: Check the supported Managers and associated Capabilities at Northbound TMF
Interface (NTI)

Procedure: At the umbrella system (NMS) execute the following method:

EMSMgr_I::getSupportedManagers

From the reported supported managers drill down on the associated capabilities.

Notes:

20 (52)

Customer specific

2. EMSMgr_I Interface

This chapter intents to cover all supported methods at the EMSMgr_I Interface. Check the

“Supported Managers and associated Capabilities” section for further details about what is currently

implemented at TMF Interface.

2.1 EMSMgr_I::acknowledgeAlarms

Purpose: Check the EMSMgr_I::acknowledgeAlarms Method implementation based on the available

Alarms

Procedure: Before requesting this Method available Alarms shall be present within EMS Domain and reported
from NTI. Request the Method:

EMSMgr_I::getEMSAndMEActiveAlarms

All active Alarms are available at the umbrella system (e.g. TTT Tool)

Request the Method:

EMSMgr_I::acknowledgeAlarms

21 (52)

Customer specific

Procedure:

Drag and Drop an available alarm inside of “acknowledgeIDList” and set the Method

additionalInfo is not supported on the scope of this operation, any information passed on this

parameter is discarded!

LOG output from TTT Tool:

[2017-10-03 12:43:32] EMSMgr_I.acknowledgeAlarms()

[2017-10-03 12:43:32] EMSMgr_I.acknowledgeAlarms() No values returned in 0.258 s

Notes:

22 (52)

Customer specific

2.2 EMSMgr_I::getAllEMSAndMEActiveAlarms
(ProbableCauseQualifier, Path Correlation)

Purpose: Check the EMSMgr_I::getAllEMSAndMEActiveAlarms Method implementation based on the

active available Alarms

Procedure: Before requesting this Method available Active Alarms shall be present within EMS and ME
entities (EMS Domain). All possible alarms shall be reported from NTI interface, the EMS (Element
Management System) is seen as TNMS system itself, ME (Management Elements) as the
Network. An Alarm solely related to ME is for e.g. Communication Link Failure with NE
(COMFAIL).

Every reported Alarm from NTI can have Service/Path correlation information, to enable this
functionality the operator needs to activate “Correlate Service Information on Alarms” at
System Preferences of TNMS.

When changing this setting (above) TNMS Server services/processes shall be restarted by the
operator.

23 (52)

Customer specific

Procedure: Moreover, the following implementation/behavior is expected:

Request the Method: EMSMgr_I::getAllEMSAndMEActiveAlarms

There is the possibility to exclude alarms of being collected at Umbrella System based on Severity
and Probable Causes. In our case, do not exclude any to have exactly the same number of alarms
from EMS+ME (EMS Domain) collected at the Umbrella System (e.g. TTT Tool).

24 (52)

Customer specific

Procedure:

LOG output from TTT Tool:

[2017-11-24 18:07:00] EMSMgr_I.getAllEMSAndMEActiveAlarms()

[2017-11-24 18:07:03] EMSMgr_I.getAllEMSAndMEActiveAlarms() Time: 2.607 s Objects: 537

Average: 0.004 s

If the correlation of service information is Enabled on Alarms (TNMS System Preferences),
there will be additional information sent for every reported alarm to the NTI:

• Number of affected paths
• Affected paths
• Affected services
• Affected subscribers

When an Alarm is raised, NTI first sends the alarm without correlation information, if the
Alarm is affecting Paths NTI re-sends the alarm with added correlation information.

25 (52)

Customer specific

Procedure: Check that the ProbableCauseQualifier at TMF-IF, related to each reported Alarm, is found also
at TNMS Alarm List:

Notes:

26 (52)

Customer specific

2.3 EMSMgr_I::getAllEMSSystemActiveAlarms

Purpose: Check the EMSMgr_I::getAllEMSSystemActiveAlarms Method implementation based on the

active available Alarms

Procedure: Before requesting this Method available Active Alarms shall be present within EMS System since
only those will be reported from NTI. The EMS (Element Management System) is seen as TNMS
system itself, ME (Management Elements) as the Network. An Alarm solely related to ME is for
e.g. Communication Link Failure with NE (COMFAIL).

Request the Method: EMSMgr_I::getAllEMSSystemActiveAlarms

There is the possibility to exclude alarms of being collected at Umbrella System based on
Severity. In our case, do not exclude any to have exactly the same number of alarms from EMS

System collected at the Umbrella System (e.g. TTT Tool).

27 (52)

Customer specific

Procedure:
LOG output from TTT Tool:

[2017-10-03 18:00:59] EMSMgr_I.getAllEMSSystemActiveAlarms()

[2017-10-03 18:00:59] EMSMgr_I.getAllEMSSystemActiveAlarms() Time: 0.221 s Objects: 2
Average: 0.110 s

Notes:

28 (52)

Customer specific

2.4 EMSMgr_I::getAllTopLevelSubnetworkNames

Purpose: Check the EMSMgr_I::getAllTopLevelSubnetworksNames Method implementation

Procedure: For the target EMS Domain only exists a single MLSN (MultiLayer Subnetwork) for the whole
TNMS management domain.

Request the Method:

EMSMgr_I::getAllTopLevelSubnetworksNames

Procedure: The NTI interface returns a single EMS Domain (MLS=1) and Name => EMS=Coriant/TNMS

Notes:

29 (52)

Customer specific

2.5 EMSMgr_I::getAllTopLevelSubnetworks

Purpose: Check the EMSMgr_I::getAllTopLevelSubnetworks Method implementation

Procedure: For the target EMS Domain only exists a single MLSN (MultiLayer Subnetwork) for the whole
TNMS management domain.

Request the Method:

EMSMgr_I::getAllTopLevelSubnetworks

Procedure: The NTI interface returns a single EMS Domain (MLS=1) => MultilayerSubnetwork=1

Notes:

30 (52)

Customer specific

2.6 EMSMgr_I::getAllTopLevelTopologicalLinkNames

Purpose: Check the EMSMgr_I::getAllTopLevelTopologicalLinkNames Method implementation

Procedure: There exist a single MLSN (MultiLayer Subnetwork) for the whole TNMS management domain.
Saying that, the following characterizes this topology:

- All MEs are contained in a single MLSN;

- Each TL is an inner TL, there are no top-level TLs;

Based on the above statements the request of the following Method shall return <Empty>

EMSMgr_I::getAllTopLevelTopologicalLinkNames

The ones needs to go inside of the single MLSN (MultiLayer Subnetwork) and from there request
the getAllTopologicalLinkNames:

EMSMgr_I::getAllTopLevelSubnetworks

MultiLayerSubnetworkMgr_I::getAllTopologicalLinkNames

31 (52)

Customer specific

Procedure:

Notes:

32 (52)

Customer specific

2.7 EMSMgr_I::getAllTopLevelTopologicalLinks

Purpose: Check the EMSMgr_I::getAllTopLevelTopologicalLinks Method implementation

Procedure: There exist a single MLSN (MultiLayer Subnetwork) for the whole TNMS management domain.
Saying that, the following characterizes this topology:

- All MEs are contained in a single MLSN;

- Each TL is an inner TL, there are no top-level TLs;

Based on the above statements the request of the following Method shall return <Empty>

EMSMgr_I::getAllTopLevelTopologicalLinks

The ones needs to go inside of the single MLSN (MultiLayer Subnetwork) and from there request
the getAllTopologicalLink:

EMSMgr_I::getAllTopLevelSubnetworks

MultiLayerSubnetworkMgr_I::getAllTopologicalLinks

33 (52)

Customer specific

Procedure:

Notes:

34 (52)

Customer specific

2.8 EMSMgr_I::getEMS

Purpose: Check the EMSMgr_I::getEMs Method implementation

Procedure: This specific capability is basically the session establishment between NMS, herein represented
by TTT Tool, and EMS Domain which is our TNMS System thru the NTI IF. As stated in a previous
section, this can be achieved in two possible ways, using the Naming Service, or EMS session

Factory IOR file.

 EMSMgr_I::getEMs

LOG output from TTT Tool:

[2017-10-04 12:11:47] Logging started!

[2017-10-04 12:12:24] Connecting to TNMS...

[2017-10-04 12:12:24] Properties file "C:\Users\gmpls\Desktop\TnmsTestClient\tmf.properties"
loaded

[2017-10-04 12:12:24] Using Naming Service

[2017-10-04 12:12:24] vendor = Coriant

[2017-10-04 12:12:24] Object path =
TMF_MTNM@Class|Coriant@Vendor|Coriant/TNMS@EmsInstance|4.5@Version

|Coriant/TNMS@EmsSessionFactory_I

[2017-10-04 12:12:24] component[0] = TMF_MTNM@Class

[2017-10-04 12:12:24] component[1] = Coriant@Vendor

[2017-10-04 12:12:24] component[2] = Coriant/TNMS@EmsInstance

[2017-10-04 12:12:24] component[3] = 4.5@Version

[2017-10-04 12:12:24] component[4] = Coriant/TNMS@EmsSessionFactory_I

[2017-10-04 12:12:24] Activate POA manager...

[2017-10-04 12:12:24] Activate NMS session...

[2017-10-04 12:12:25] Connected! Time: 1.03 s

Notes:

mailto:TMF_MTNM@Class%7CCoriant@Vendor%7CCoriant/TNMS@EmsInstance%7C4.5@Version

35 (52)

Customer specific

2.9 EMSMgr_I::getTopLevelTopologicalLink

Purpose: Check the EMSMgr_I::getTopLevelTopologicalLinks Method implementation

Procedure: There exist a single MLSN (MultiLayer Subnetwork) for the whole TNMS management domain.
Saying that, the following characterizes this topology:

- All MEs are contained in a single MLSN;

- Each TL is an inner TL, there are no top-level TLs;

Based on the above statements the request of the following Method shall return <Empty>

EMSMgr_I::getTopLevelTopologicalLink

In the used umbrella system (TTT tool) this Method was simply removed from the GUI since
makes no sense in the context of our single MLSN.

Notes:

36 (52)

Customer specific

2.10 EMSMgr_I::unacknowledgeAlarms

Purpose: Check the EMSMgr_I::unacknowledgeAlarms Method implementation based on the available

Alarms

Procedure: Before requesting this Method available Alarms shall be present within EMS Domain, at least one
already acknowledged (see related testcase), and reported from NTI. Request the Method:

EMSMgr_I::getEMSAndMEActiveAlarms

All active Alarms are available at the umbrella system (e.g. TTT Tool)

At the Contents of the related Alarm (acknowledged) it is possible to see
acknowledgeIndication=TRUE

Request the Method: EMSMgr_I::unacknowledgeAlarms

37 (52)

Customer specific

Procedure:
Drag and Drop the Alarm (acknowledged) inside of “UnacknowledgeIDList” and set the Method

additionalInfo is not supported on the scope of this operation, any information passed on this

parameter is discarded!

LOG output from TTT Tool:

[2017-10-03 13:28:24] EMSMgr_I.unacknowledgeAlarms()

[2017-10-03 13:28:24] EMSMgr_I.unacknowledgeAlarms() No values returned in 0.311 s

Notes:

38 (52)

Customer specific

2.11 EMSMgr_I::createTopologicalLink (Create IPCs)

Purpose: Check the EMSMgr_I::createTopologicalLink Method implementation based on an existing

Network (MEs)

Procedure: There exist a single MLSN (MultiLayer Subnetwork) for the whole TNMS management
domain. Saying that, the following characterizes this topology:

- All MEs are contained in a single MLSN;

- Each TL is an inner TL, there are no top-level TLs;

It means that, TopLevelSubnetworks shall be requested and only after the existing
TLs.

This Method allows the creation of Topological Links (TLs), also known in EMS System
(TNMS) terminology as Physical Trails, or even Port Connections. For instance, the
connection between O02CSP and Transponder card, to support the OCH Client
Protection, requires a Topological Link.

Before creating the required TL the following Methods shall be executed in order to have
the appropriate the End Points available:
ManageElementMgr_I::getAllManageElements ; ManageElementMgr_I::getAllPTPs

Based on the available PTPs (by dragging and dropping) request the Method:
EMSMgr_I::createTopologicalLink

39 (52)

Customer specific

Procedure:

The new requested Topological Link is created from the Umbrella System (e.g. TTT
Tool) to the EMS System (TNMS):

Request the following Methods to retrieve all Topological Links to the Umbrella System:

EMSMgr_I::getAllTopLevelSubnetworks

At MLS=1, MultiLayerSubnetworkMgr_I::getAllTopologicalLinks

All existing Topological Links (TLs) are reported from EMS System (TNMS) to the
umbrella System.

In contradiction with SNCs where changing the nativeEMSName changes the Path
name at EMS system (TNMS); for TLs changing its name (description) via TMF is
currently not supported.

Notes: setNativeEMSName not supported to rename the Physical Trail:
errorReason: Target object is not allowed for this operation.
exceptionType: EXCPT_UNABLE_TO_COMPLY

40 (52)

Customer specific

2.12 EMSMgr_I::deleteTopologicalLink (Delete IPCs)

Purpose: Check the EMSMgr_I::deleteTopologicalLink Method implementation based on an existing

Network (MEs)

Procedure: There exist a single MLSN (MultiLayer Subnetwork) for the whole TNMS management domain.
Saying that, the following characterizes this topology:

- All MEs are contained in a single MLSN;

- Each TL is an inner TL, there are no top-level TLs;

It means that, TopLevelSubnetworks shall be requested and only after the existing TLs.

This Method allows the deletion of Topological Links (TLs), also known in EMS System (TNMS)
terminology as Physical Trails, or even Port Connections. Available Physical Trails shall be
present within EMS Domain; request the following Methods to have them reported as Topological
Links at the Umbrella System (e.g. TTT Tool):

EMSMgr_I::getAllTopLevelSubnetworks

At MLS=1, MultiLayerSubnetworkMgr_I::getAllTopologicalLinks

All existing Topological Links (TLs) are reported from EMS System (TNMS) to the umbrella
System (e.g. TTT Tool). Select one of them (e.g. userLabel: MTERA hiT7300_6 PC) and request
the Method:

EMSMgr_I::deleteTopologicalLink

Notes:

41 (52)

Customer specific

3. EquipmentInventoryMgr_I Interface

This chapter intents to cover all supported methods at the EquipmentInventoryMgr_I Interface.

Check the “Supported Managers and associated Capabilities” section for further details about what

is currently implemented at TMF Interface.

3.1 EquipmentInventoryMgr_I::getAllEquipment

Purpose: Check the EquipmentInventoryMgr_I::getAllEquipment Method implementation based on an

existing Network (MEs)

Procedure: Before requesting this Method Management Elements (MEs) shall be available at the umbrella
system; at ManageElementMgr_I Interface execute the following method:

ManageElementMgr_I::getAllManagedElements

Having MEs available the Equipment Inventory can be retrieved per each one by requesting the
Method:

EquipmentInventoryMgr_I::getAllEquipment

Notes:

42 (52)

Customer specific

3.2 EquipmentInventoryMgr_I::getAllEquipmentNames

Purpose: Check the EquipmentInventoryMgr_I::getAllEquipmentNames Method implementation based

on an existing Network (MEs)

Procedure: Before requesting this Method Management Elements (MEs) shall be available at the umbrella
system; at ManageElementMgr_I Interface execute the following method:

ManageElementMgr_I::getAllManagedElements

Procedure: Having MEs available the Equipment Inventory can be retrieved per each one by requesting the
Method:

EquipmentInventoryMgr_I::getAllEquipmentNames

Notes:

43 (52)

Customer specific

3.3 EquipmentInventoryMgr_I::getAllSupportedPTPNames

Purpose: Check the EquipmentInventoryMgr_I::getAllSupportedPTPNames Method implementation

based on existing Inventory

Procedure: Before requesting this Method Management Elements (MEs) and the related Equipment
Inventory (Cards and pluggables) shall be available at the umbrella system; request the

following Methods:

ManageElementMgr_I::getAllManagedElements

EquipmentInventoryMgr_I::getAllEquipment

Having the Equipment Inventory available for a related ME the following Method can be retrieved:

EquipmentInventoryMgr_I::getAllSupportedPTPNames

Notes:

44 (52)

Customer specific

3.4 EquipmentInventoryMgr_I::getAllSupportedPTPs

Purpose: Check the EquipmentInventoryMgr_I::getAllSupportedPTPs Method implementation based

on existing Inventory

Procedure: Before requesting this Method Management Elements (MEs) and the related Equipment
Inventory (Cards and pluggables) shall be available at the umbrella system; request the

following Methods:

ManageElementMgr_I::getAllManagedElements

EquipmentInventoryMgr_I::getAllEquipment

Having the Equipment Inventory available for a related ME the following Method can be retrieved:

Procedure: EquipmentInventoryMgr_I::getAllSupportedPTPs

Notes:

45 (52)

Customer specific

3.5 EquipmentInventoryMgr_I::getEquipment

Purpose: Check the EquipmentInventoryMgr_I::getEquipment Method implementation based on

existing Inventory

Procedure: Before requesting this Method Management Elements (MEs) and the related Equipment
Inventory Names (Cards and pluggables Names) shall be available at the umbrella system;

request the following Methods:

ManageElementMgr_I::getAllManagedElements

EquipmentInventoryMgr_I::getAllEquipmentNames

Having the Equipment Names available for a related ME the following Method can be retrieved:

EquipmentInventoryMgr_I::getEquipment

Notes:

46 (52)

Customer specific

3.6 EquipmentInventoryMgr_I::setAlarmReportingOff

Purpose: Check the EquipmentInventoryMgr_I::setAlarmReportingOff Method implementation based on
existing Cards/Ports

Procedure: Before requesting this Method Management Elements (MEs) and the related Equipment (Cards
and Ports) shall be available at the umbrella system; request the following Methods:

ManageElementMgr_I::getAllManagedElements

EquipmentInventoryMgr_I::getAllEquipment

Having the Equipment available (Cards and Ports) for a related ME the following Method can be
retrieved:

Procedure: EquipmentInventoryMgr_I::setAlarmReportingOff

Notes:

47 (52)

Customer specific

3.7 EquipmentInventoryMgr_I::setAlarmReportingOn

Purpose: Check the EquipmentInventoryMgr_I::setAlarmReportingOn Method implementation based on
existing Cards/Ports

Procedure: Before requesting this Method Management Elements (MEs) and the related Equipment (Cards
and Ports) shall be available at the umbrella system; request the following Methods:

ManageElementMgr_I::getAllManagedElements

EquipmentInventoryMgr_I::getAllEquipment

Having the Equipment available (Cards and Ports) for a related ME the following Method can be
retrieved:

EquipmentInventoryMgr_I::setAlarmReportingOff

Notes:

48 (52)

Customer specific

3.8 EquipmentInventoryMgr_I::provisionEquipment (Card
Commissioning)

Purpose: Check the EquipmentInventoryMgr_I::provisionEquipment Method implementation based on

an existing Network (MEs)

Procedure: This Method allows the Provisioning of the plannedActualCardType value only; it does
not support creation of Equipment.

Before Provisioning the plannedActualCardType value to an existing card the following
Methods shall be executed in order to have all available Equipment:

ManageElementMgr_I::getAllManageElements;

EquipmentInventoryMgr_I::getAllEquipment

For a selected existing card the plannedActualCardType value can be manipulated:

Request the following Method:

EquipmentInventoryMgr_I::provisionEquipment

and set the desired plannedActualCardType

49 (52)

Customer specific

Procedure:

Request again EquipmentInventoryMgr_I::getAllEquipment to have the latest
equipment update to the Umbrella System (e.g. TTT Tool).

Notes:

50 (52)

Customer specific

4. Abbreviations

A
ACS Actual Creation State
APS Application Program System
ASON Automatic Switched Optical Network
ASTN Automatic Switched Transport Network
AVC Attribute Value Change

B
BCB BiCNet Communication Bus
BiCNet Best in Class Network Management
BCM Boarder Crossing Mode

C
CC Cross Connection
CDT Central Daylight Saving Time
CF Common Function
CM Configuration Management
CORBA Common Object Request Broker Architecture
CR-LDP Constraint Route – Label Distribution Protocol
CTP Connection Termination Point
CSPF Constrained Shortest Path First
CLEI Common Language Equipment Identification

D
DWDM Dense Wavelength Division Multiplexing
DCN Data Communication Network

E
E2E End-to-End
E-NNI Exterior Node to Node Interface
EM/NE ObjM Element Manager/Network Element Object Management
EML Element Management Layer
EMS Element Management System
ERO Explicit Route Object
Eth all Ethernet layers supported according TR0026304 Support of Ethernet Layers

F
FA Forwarding Adjacencies
FA-LSP Forwarding Adjacencies LSP
FDN Full Distinguished Name
FM Fault Management

G
GFP Generic Framing Procedure
GFPC GFP Channel
GMPLS Generalized Multi-protocol Label Switching
GNE Gateway Network Element
GTP Group Termination Point
GTTP Group Trail Termination Point

I
ID Identification
IDL Interface Definition Language
IOR Interoperable Object Reference
I-NNI Internal Node to Node Interface
IS-IS Intermediate System to Intermediate System
ITU-T International Telecommunications Union

51 (52)

Customer specific

J
JEE Java Enterprise Edition
JMS Java Messaging Service
 L
L2SC Layer-2 Switch Capable
LCT Local Craft Terminal (Software)
LDP Label Distribution Protocol
LO-VC Lower Order Virtual Container
LSA Link State Advertisement
LSP Label Switched Path

M
MDB Message Driven Bean
ME Managed Element
MEMgr Managed Element Manager
MLSN MultiLayer Subnetwork
MLSNMgr MultiLayer Subnetwork Manager

N
NE Network Element
NEC Network Element Controller
NMS Network Management system
NWL Network Layer

O
OADM Optical Add/Drop Multiplexer
OC Object Creation
OCP Optical Channel Protection
OCR Optical Channel Regenerator
OCU Optical Channel Unit
OD Object Deletion
ODU Optical Data Unit
OLM Optical Link Manager – Manages Services
OCH Optical Channel
OD Object Deletion
OLR Optical Line Repeater
OMG Object Management Group
OMS Optical Multiplex Section
ORB Object Request Broker
OTS Optical Transmission Section
OTT Optical Trail Termination
OTU Optical Transport Unit
OIF Optical Interworking Forum
OSPF-TE OSPF Traffic Engineering extensions
OSPF Open Shortest Path First

P
PC Permanent Connection
PGP Protection Group
PM Performance Management
PS Protection Switching
PTP Physical Termination Point
PDH Plesiochronous Digital Hierarchy
PFL Product Feature List
POJO Plain Old Java Object

52 (52)

Customer specific

R
RCS Required Creation State
RDN Relative Distinguished Name
RS Regenerator Section
RFC Request For Changes
RSVP Resource ReSerVation Protocol
RMI Remote method invocation
RSVP-TE RSVP Traffic Engineering extensions
RDBMS Rational Database Management System

S
SC Switched Connection / State Change
SDH Synchronous Digital Hierarchy
SNC Sub-Network Connection
SNCP Subnetwork Connection Protection
SONET Synchronous Optical Network
SPC Switched Permanent Connection
SNCP SubNetwork Connection Protection
SRLG Shared Risk Link Group
SSIM SONET/SDH Information Modeling

T
TCOM TMF CORBA Manager
TCA Threshold Crossing Alert
TCOA TMF CORBA Agent
TCOI TMF CORBA Interface
TCOM TMF CORBA Manager
TDM Time Division Multiplex
TE Traffic Engineering
TE-Link Traffic Engineering Link
TL Topological Link
TLV Type-Length-Value format
TMF TeleManagement Forum
TNA Telecommunication Network Assigned
TNMS Telecommunication Network Management System
TNMS-C Telecommunication Network Management System - Core
TP Termination Point
TPL Transmit Power Level
TrD Traffic Descriptor
TTP Trail Termination Point

U
UNI User Network Interface
UNO Universal Object

V
VC4 Virtual Container level 4
VCAT Virtual Concatenation
VLAN Virtual Local Access Network

W
WDM Wavelength Division Multiplexing

X
XC Cross Connection

